Iceberg
Important Capabilities
Capability | Status | Notes |
---|---|---|
Data Profiling | ✅ | Optionally enabled via configuration. |
Descriptions | ✅ | Enabled by default. |
Detect Deleted Entities | ✅ | Enabled via stateful ingestion |
Domains | ❌ | Currently not supported. |
Extract Ownership | ✅ | Automatically ingests ownership information from table properties based on user_ownership_property and group_ownership_property |
Partition Support | ❌ | Currently not supported. |
Platform Instance | ✅ | Optionally enabled via configuration, an Iceberg instance represents the catalog name where the table is stored. |
Integration Details
The DataHub Iceberg source plugin extracts metadata from Iceberg tables stored in a distributed or local file system. Typically, Iceberg tables are stored in a distributed file system like S3 or Azure Data Lake Storage (ADLS) and registered in a catalog. There are various catalog implementations like Filesystem-based, RDBMS-based or even REST-based catalogs. This Iceberg source plugin relies on the pyiceberg library.
CLI based Ingestion
Starter Recipe
Check out the following recipe to get started with ingestion! See below for full configuration options.
For general pointers on writing and running a recipe, see our main recipe guide.
source:
type: "iceberg"
config:
env: PROD
catalog:
# REST catalog configuration example using S3 storage
my_rest_catalog:
type: rest
# Catalog configuration follows pyiceberg's documentation (https://py.iceberg.apache.org/configuration)
uri: http://localhost:8181
s3.access-key-id: admin
s3.secret-access-key: password
s3.region: us-east-1
warehouse: s3a://warehouse/wh/
s3.endpoint: http://localhost:9000
# SQL catalog configuration example using Azure datalake storage and a PostgreSQL database
# my_sql_catalog:
# type: sql
# uri: postgresql+psycopg2://user:password@sqldatabase.postgres.database.azure.com:5432/icebergcatalog
# adlfs.tenant-id: <Azure tenant ID>
# adlfs.account-name: <Azure storage account name>
# adlfs.client-id: <Azure Client/Application ID>
# adlfs.client-secret: <Azure Client Secret>
platform_instance: my_rest_catalog
table_pattern:
allow:
- marketing.*
profiling:
enabled: true
sink:
# sink configs
Config Details
- Options
- Schema
Note that a .
is used to denote nested fields in the YAML recipe.
Field | Description |
---|---|
catalog ✅ map(str,object) | |
group_ownership_property string | Iceberg table property to look for a CorpGroup owner. Can only hold a single group value. If property has no value, no owner information will be emitted. |
platform_instance string | The instance of the platform that all assets produced by this recipe belong to. This should be unique within the platform. See https://datahubproject.io/docs/platform-instances/ for more details. |
processing_threads integer | How many threads will be processing tables Default: 1 |
user_ownership_property string | Iceberg table property to look for a CorpUser owner. Can only hold a single user value. If property has no value, no owner information will be emitted. Default: owner |
env string | The environment that all assets produced by this connector belong to Default: PROD |
namespace_pattern AllowDenyPattern | Regex patterns for namespaces to filter in ingestion. Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True} |
namespace_pattern.ignoreCase boolean | Whether to ignore case sensitivity during pattern matching. Default: True |
namespace_pattern.allow array | List of regex patterns to include in ingestion Default: ['.*'] |
namespace_pattern.allow.string string | |
namespace_pattern.deny array | List of regex patterns to exclude from ingestion. Default: [] |
namespace_pattern.deny.string string | |
table_pattern AllowDenyPattern | Regex patterns for tables to filter in ingestion. Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True} |
table_pattern.ignoreCase boolean | Whether to ignore case sensitivity during pattern matching. Default: True |
table_pattern.allow array | List of regex patterns to include in ingestion Default: ['.*'] |
table_pattern.allow.string string | |
table_pattern.deny array | List of regex patterns to exclude from ingestion. Default: [] |
table_pattern.deny.string string | |
profiling IcebergProfilingConfig | Default: {'enabled': False, 'include_field_null_count': Tru... |
profiling.enabled boolean | Whether profiling should be done. Default: False |
profiling.include_field_max_value boolean | Whether to profile for the max value of numeric columns. Default: True |
profiling.include_field_min_value boolean | Whether to profile for the min value of numeric columns. Default: True |
profiling.include_field_null_count boolean | Whether to profile for the number of nulls for each column. Default: True |
profiling.operation_config OperationConfig | Experimental feature. To specify operation configs. |
profiling.operation_config.lower_freq_profile_enabled boolean | Whether to do profiling at lower freq or not. This does not do any scheduling just adds additional checks to when not to run profiling. Default: False |
profiling.operation_config.profile_date_of_month integer | Number between 1 to 31 for date of month (both inclusive). If not specified, defaults to Nothing and this field does not take affect. |
profiling.operation_config.profile_day_of_week integer | Number between 0 to 6 for day of week (both inclusive). 0 is Monday and 6 is Sunday. If not specified, defaults to Nothing and this field does not take affect. |
stateful_ingestion StatefulStaleMetadataRemovalConfig | Iceberg Stateful Ingestion Config. |
stateful_ingestion.enabled boolean | Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or datahub_api is specified, otherwise False Default: False |
stateful_ingestion.remove_stale_metadata boolean | Soft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled. Default: True |
The JSONSchema for this configuration is inlined below.
{
"title": "IcebergSourceConfig",
"description": "Base configuration class for stateful ingestion for source configs to inherit from.",
"type": "object",
"properties": {
"env": {
"title": "Env",
"description": "The environment that all assets produced by this connector belong to",
"default": "PROD",
"type": "string"
},
"platform_instance": {
"title": "Platform Instance",
"description": "The instance of the platform that all assets produced by this recipe belong to. This should be unique within the platform. See https://datahubproject.io/docs/platform-instances/ for more details.",
"type": "string"
},
"stateful_ingestion": {
"title": "Stateful Ingestion",
"description": "Iceberg Stateful Ingestion Config.",
"allOf": [
{
"$ref": "#/definitions/StatefulStaleMetadataRemovalConfig"
}
]
},
"catalog": {
"title": "Catalog",
"description": "Catalog configuration where to find Iceberg tables. Only one catalog specification is supported. The format is the same as [pyiceberg's catalog configuration](https://py.iceberg.apache.org/configuration/), where the catalog name is specified as the object name and attributes are set as key-value pairs.",
"type": "object",
"additionalProperties": {
"type": "object"
}
},
"table_pattern": {
"title": "Table Pattern",
"description": "Regex patterns for tables to filter in ingestion.",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"allOf": [
{
"$ref": "#/definitions/AllowDenyPattern"
}
]
},
"namespace_pattern": {
"title": "Namespace Pattern",
"description": "Regex patterns for namespaces to filter in ingestion.",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"allOf": [
{
"$ref": "#/definitions/AllowDenyPattern"
}
]
},
"user_ownership_property": {
"title": "User Ownership Property",
"description": "Iceberg table property to look for a `CorpUser` owner. Can only hold a single user value. If property has no value, no owner information will be emitted.",
"default": "owner",
"type": "string"
},
"group_ownership_property": {
"title": "Group Ownership Property",
"description": "Iceberg table property to look for a `CorpGroup` owner. Can only hold a single group value. If property has no value, no owner information will be emitted.",
"type": "string"
},
"profiling": {
"title": "Profiling",
"default": {
"enabled": false,
"include_field_null_count": true,
"include_field_min_value": true,
"include_field_max_value": true,
"operation_config": {
"lower_freq_profile_enabled": false,
"profile_day_of_week": null,
"profile_date_of_month": null
}
},
"allOf": [
{
"$ref": "#/definitions/IcebergProfilingConfig"
}
]
},
"processing_threads": {
"title": "Processing Threads",
"description": "How many threads will be processing tables",
"default": 1,
"type": "integer"
}
},
"required": [
"catalog"
],
"additionalProperties": false,
"definitions": {
"DynamicTypedStateProviderConfig": {
"title": "DynamicTypedStateProviderConfig",
"type": "object",
"properties": {
"type": {
"title": "Type",
"description": "The type of the state provider to use. For DataHub use `datahub`",
"type": "string"
},
"config": {
"title": "Config",
"description": "The configuration required for initializing the state provider. Default: The datahub_api config if set at pipeline level. Otherwise, the default DatahubClientConfig. See the defaults (https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/src/datahub/ingestion/graph/client.py#L19).",
"default": {},
"type": "object"
}
},
"required": [
"type"
],
"additionalProperties": false
},
"StatefulStaleMetadataRemovalConfig": {
"title": "StatefulStaleMetadataRemovalConfig",
"description": "Base specialized config for Stateful Ingestion with stale metadata removal capability.",
"type": "object",
"properties": {
"enabled": {
"title": "Enabled",
"description": "Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or `datahub_api` is specified, otherwise False",
"default": false,
"type": "boolean"
},
"remove_stale_metadata": {
"title": "Remove Stale Metadata",
"description": "Soft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.",
"default": true,
"type": "boolean"
}
},
"additionalProperties": false
},
"AllowDenyPattern": {
"title": "AllowDenyPattern",
"description": "A class to store allow deny regexes",
"type": "object",
"properties": {
"allow": {
"title": "Allow",
"description": "List of regex patterns to include in ingestion",
"default": [
".*"
],
"type": "array",
"items": {
"type": "string"
}
},
"deny": {
"title": "Deny",
"description": "List of regex patterns to exclude from ingestion.",
"default": [],
"type": "array",
"items": {
"type": "string"
}
},
"ignoreCase": {
"title": "Ignorecase",
"description": "Whether to ignore case sensitivity during pattern matching.",
"default": true,
"type": "boolean"
}
},
"additionalProperties": false
},
"OperationConfig": {
"title": "OperationConfig",
"type": "object",
"properties": {
"lower_freq_profile_enabled": {
"title": "Lower Freq Profile Enabled",
"description": "Whether to do profiling at lower freq or not. This does not do any scheduling just adds additional checks to when not to run profiling.",
"default": false,
"type": "boolean"
},
"profile_day_of_week": {
"title": "Profile Day Of Week",
"description": "Number between 0 to 6 for day of week (both inclusive). 0 is Monday and 6 is Sunday. If not specified, defaults to Nothing and this field does not take affect.",
"type": "integer"
},
"profile_date_of_month": {
"title": "Profile Date Of Month",
"description": "Number between 1 to 31 for date of month (both inclusive). If not specified, defaults to Nothing and this field does not take affect.",
"type": "integer"
}
},
"additionalProperties": false
},
"IcebergProfilingConfig": {
"title": "IcebergProfilingConfig",
"type": "object",
"properties": {
"enabled": {
"title": "Enabled",
"description": "Whether profiling should be done.",
"default": false,
"type": "boolean"
},
"include_field_null_count": {
"title": "Include Field Null Count",
"description": "Whether to profile for the number of nulls for each column.",
"default": true,
"type": "boolean"
},
"include_field_min_value": {
"title": "Include Field Min Value",
"description": "Whether to profile for the min value of numeric columns.",
"default": true,
"type": "boolean"
},
"include_field_max_value": {
"title": "Include Field Max Value",
"description": "Whether to profile for the max value of numeric columns.",
"default": true,
"type": "boolean"
},
"operation_config": {
"title": "Operation Config",
"description": "Experimental feature. To specify operation configs.",
"allOf": [
{
"$ref": "#/definitions/OperationConfig"
}
]
}
},
"additionalProperties": false
}
}
}
Concept Mapping
This ingestion source maps the following Source System Concepts to DataHub Concepts:
Source Concept | DataHub Concept | Notes |
---|---|---|
iceberg | Data Platform | |
Table | Dataset | An Iceberg table is registered inside a catalog using a name, where the catalog is responsible for creating, dropping and renaming tables. Catalogs manage a collection of tables that are usually grouped into namespaces. The name of a table is mapped to a Dataset name. If a Platform Instance is configured, it will be used as a prefix: <platform_instance>.my.namespace.table . |
Table property | User (a.k.a CorpUser) | The value of a table property can be used as the name of a CorpUser owner. This table property name can be configured with the source option user_ownership_property . |
Table property | CorpGroup | The value of a table property can be used as the name of a CorpGroup owner. This table property name can be configured with the source option group_ownership_property . |
Table parent folders (excluding warehouse catalog location) | Container | Available in a future release |
Table schema | SchemaField | Maps to the fields defined within the Iceberg table schema definition. |
Troubleshooting
Exceptions while increasing processing_threads
Each processing thread will open several files/sockets to download manifest files from blob storage. If you experience
exceptions appearing when increasing processing_threads
configuration parameter, try to increase limit of open
files (i.e. using ulimit
in Linux).
Code Coordinates
- Class Name:
datahub.ingestion.source.iceberg.iceberg.IcebergSource
- Browse on GitHub
Questions
If you've got any questions on configuring ingestion for Iceberg, feel free to ping us on our Slack.